

Von Bildern zu 3D Modellen

Auf Basis der Master-Thesis:

Untersuchung der Eignung von Smartphones zur Erfassung von unterirdischen Schächten mittels Structure-from-Motion bei schlechten Lichtverhältnissen

Gliederung

- Landeswasserversorgung
- BIM
- Grundlagen Schächte und Structure from Motion
- Optimierung des Structure from Motion Prozess
- Erreichte Genauigkeiten
- Ergebnis
- Fazit

Landeswasserversorgung

Grafik Fernleitungsnetz der LW

- 785km Leitung
- Ca. 2000 Schächte

(Zweckverband Landeswasserversorgung, 2025)

Ziel - Landeswasserversorgung

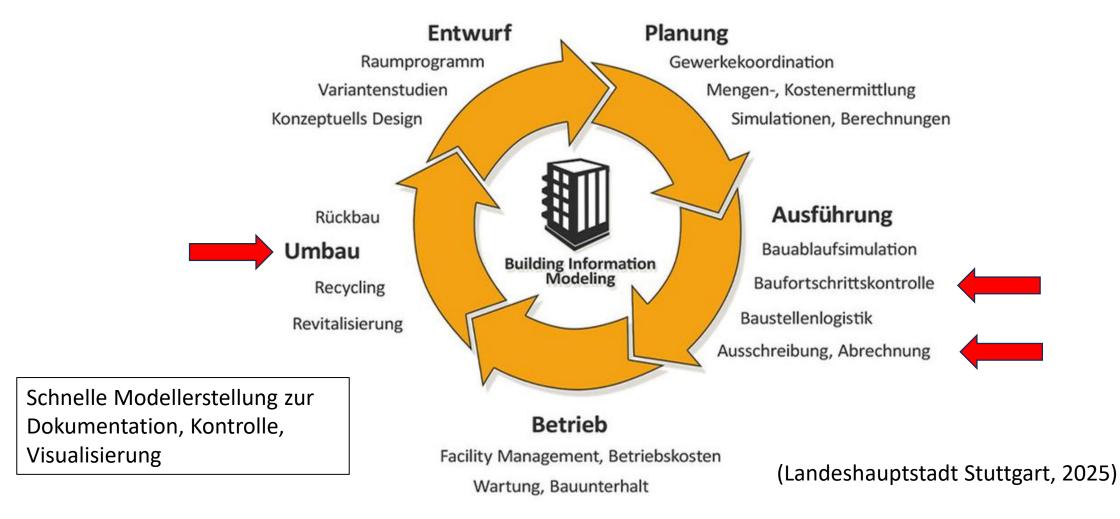
- Untersuchung der Genauigkeiten bei schlechten Lichtbedingung
- Überprüfung der Einsatzmöglichkeit zur Digitalisierung der Schächte
- Untersuchung der Einflüsse auf das Ergebnis


	Genauigkeit des SfM-Modells	Verwendungszweck
Ziel 1	<5cm	Einfache Modellierung in Autodesk Revit
Ziel 2	<3cm	Einfache Berechnungen in ausreichender Genauigkeit möglich
Ziel 3	<1cm	Optimale Genauigkeit für Berechnungen

Merkmale der BIM-Methodik

- Modellbasiertes Arbeiten
- Ein Modell als gemeinsame Datengrundlage
- Verbessertes Informationsmanagement
- Verbesserte Kommunikation
- Lebenszyklus

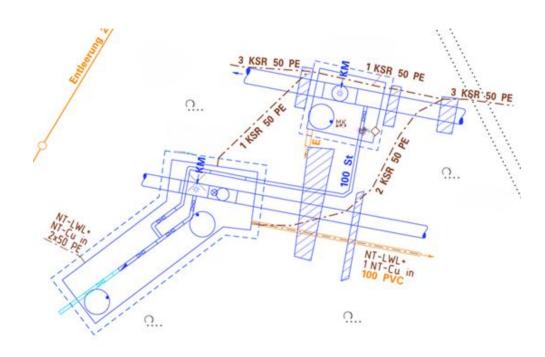
BIM-Lebenszyklus



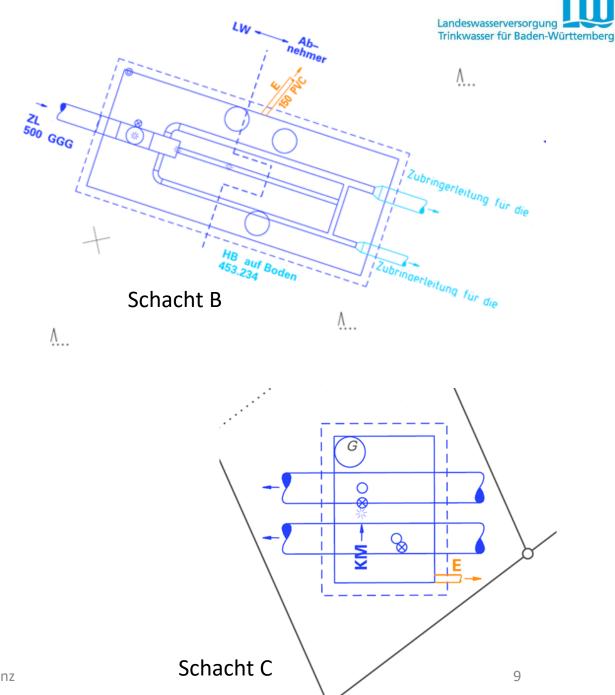
Facility Management, Betriebskosten Wartung, Bauunterhalt

(Landeshauptstadt Stuttgart, 2025)

BIM-Lebenszyklus



Kameras


Modell	Sensor	Auflösung	Pixelgröße	Blende	Sensorgröße	Preis	Produktions- jahr
Samsung Galaxy A55	IMX906	50MP	1.0 μm	f/1.8	1/1.56"	Ca. 305€	2024
Samsung Galaxy A34	IMX582	48MP	0.8 μm	f/1.8	1/2"	Ca. 219€	2023
Fairphone 4	IMX582	48MP	0.8 μm	f/1.6	1/2"	Ca. 279€	2021

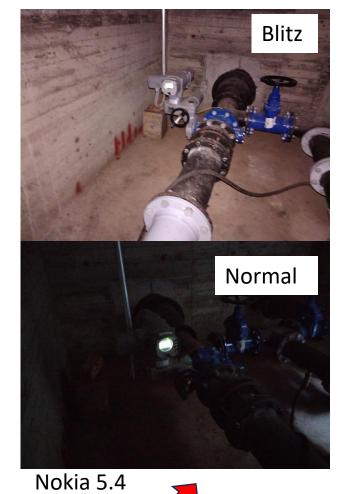
Methode	Beschreibung
Normal	Keine Veränderung der Kameraaufnahmemethode, keine Veränderung des Schachts, keine Veränderung
	der Lichtverhältnisse
Nacht	Verwendung des Nachtmodus der Kamera, keine Veränderung des Schachts, keine Veränderung der
	Lichtverhältnisse
Blitz	Verwendung des Kamerablitzes des Smartphones, keine Veränderung des Schachts, hellere Aufnahmen
	aufgrund des Blitzes
Dunkel	Keine Veränderung der Kameraaufnahmemethode, schließen redundanter Schachtdeckel,
	Teilverdunklung des Schachts

Schächte

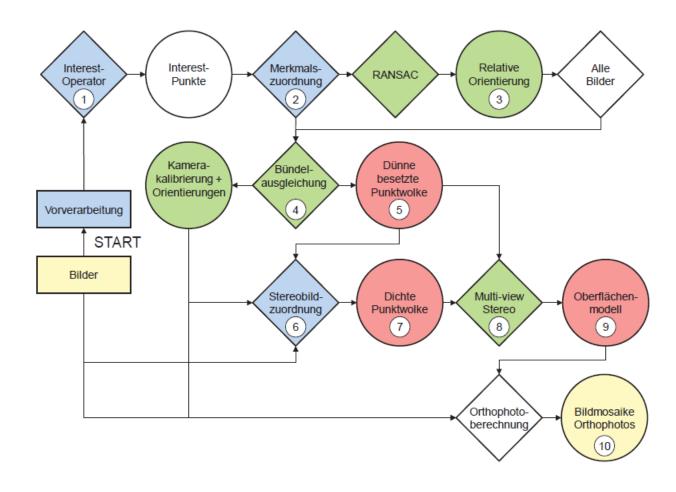
Schacht A

17.11.2025

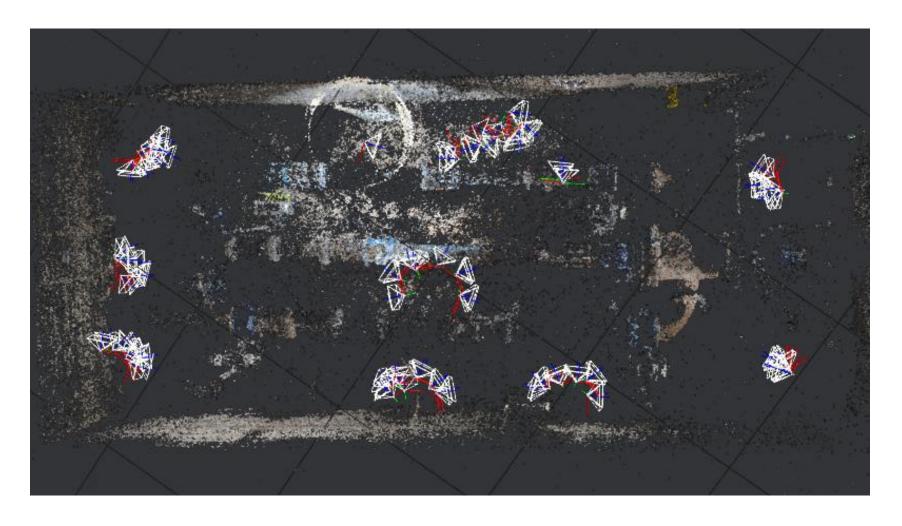
Lukas Hanz



Samsung Galaxy A55

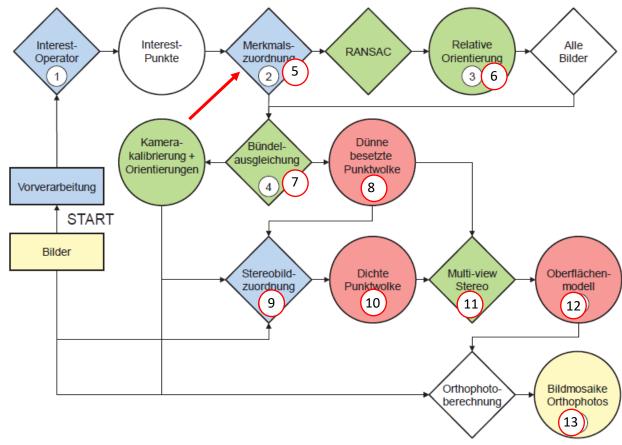

Fairphone 4

Kommt der optischen Wahrnehmung am nächsten


Structure-from-Motion

(Luhmann, 2023, S. 492)

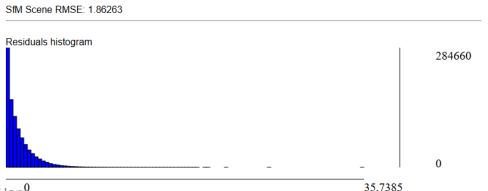
Aufnahme der Bilder



Feature Matching


Optimierung Structure-from-Motion

Optimierung Structure-from-Motion



Dataset info: #views: 92 #valid views: 88 #poses: 88 #intrinsics: 2 #tracks: 129259 #residuals: 422216

Dataset info: #views: 92 #valid views: 92 #poses: 92 #intrinsics: 2 #tracks: 146996 #residuals: 484124

Modellerstellung

Schacht A

Samsung Galaxy Blitz Schacht A

Modellerstellung

Schacht B

Samsung Galaxy Blitz Schacht B

0.050000

0.043750

0.040625

0.037500

0.034375

0.031250

0.028125

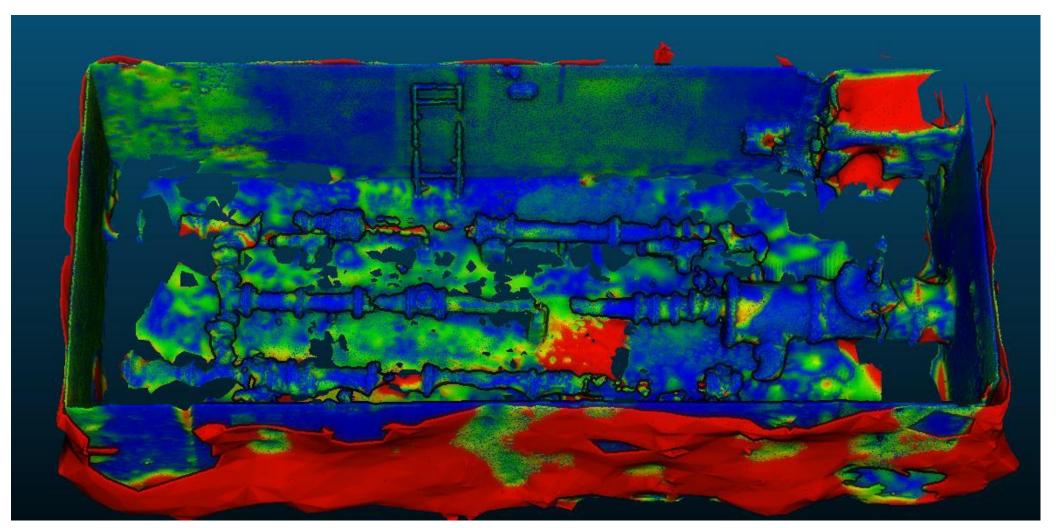
0.025000

0.021875

0.018750

0.015625

0.012500


0.009375

0.006250

0.003125

0.00038

Genauigkeitsanalyse

0.043750 -

0.040625 -

0.037500 -

0.034375 -

0.031250 -

0.028125 -

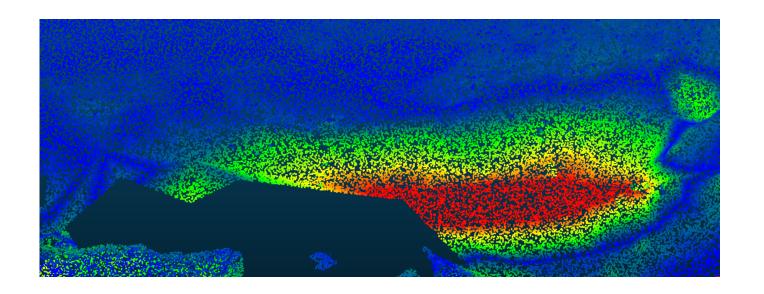
0.025000 -

0.021875 -

0.018750

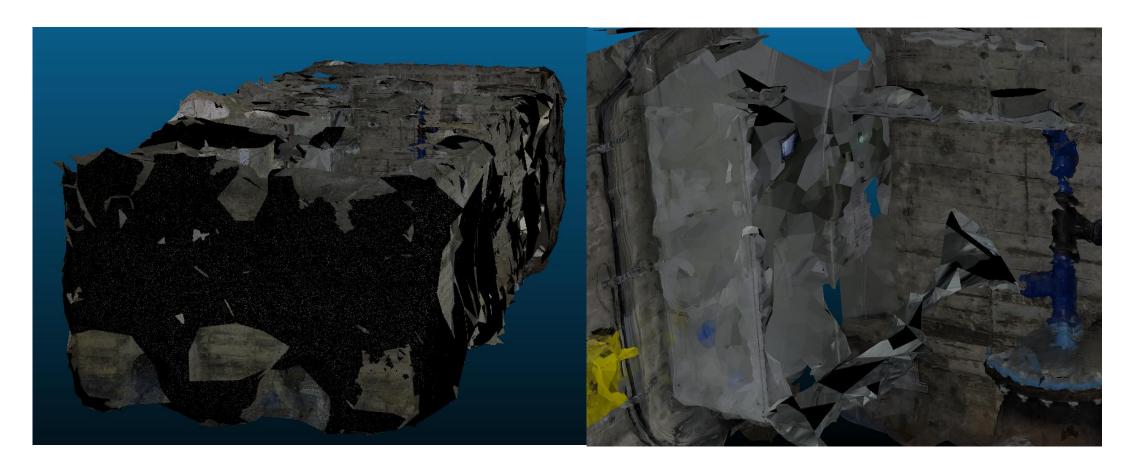
0.015625 -

0.012500 -

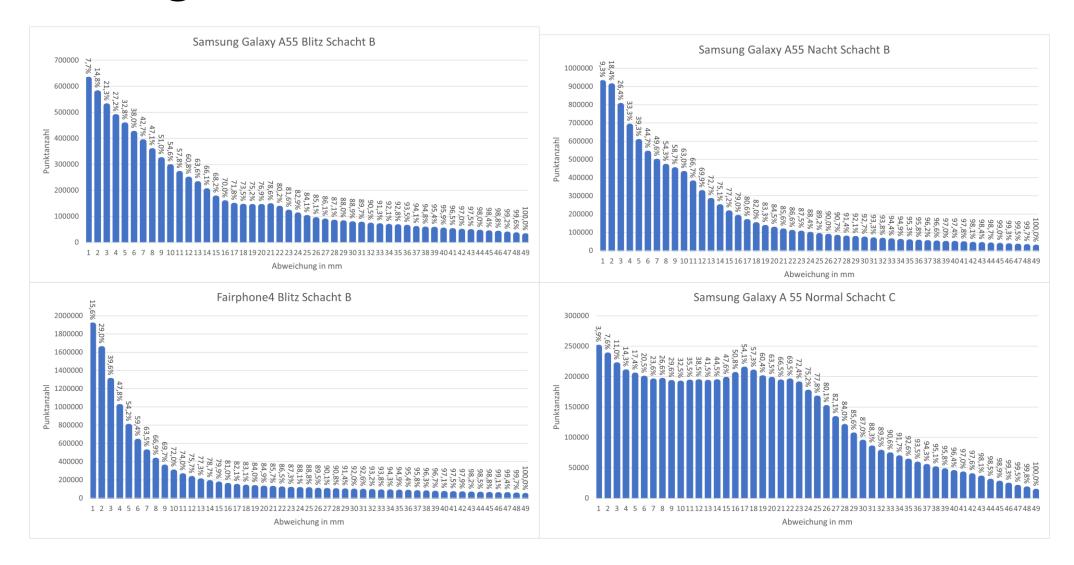

0.009375

0.006250

 $0.003125 \cdot$


0.000000

Genauigkeitsanalyse



Genauigkeitsanalyse - Fehler

Genauigkeiten

Genauigkeiten

Schacht	Smartphone und Aufnahmemethode	RMSE in mm	Standard- abweichung (σ) in mm	Arith. Mittel in mm	Abweichung der Punkte bei 95% in mm	Anzahl der Punkte innerhalb von 2 σ
Α	Samsung Galaxy A55 – Normal	11.6	9.4	8.0	Ca. 26	Ca. 90.0%
Α	Samsung Galaxy A55 – Dunkel	11.6	8.1	8.3	Ca. 25	Ca.87.2%
Α	Samsung Galaxy A55 – Blitz	11.7	8.6	7.9	Ca. 27	Ca. 88.6%
Α	Fairphone 4 – Normal	13.5	9.2	9.8	Ca. 29	Ca. 84.6%
Α	Fairphone 4 – Dunkel	20.3	13.1	20.3	Ca. 44	Ca. 67.2%
Α	Fairphone 4 – Blitz	10.9	8.4	6.9	Ca. 25	Ca. 89.6%
В	Samsung Galaxy A55 – Normal	20.6	12.6	16.3	Ca. 41	Ca. 76.3%
В	Samsung Galaxy A55 – Blitz	17.6	11.7	13.2	Ca. 38	Ca. 81.6%
В	Samsung Galaxy A55 – Nacht	15.0	10.3	10.9	Ca. 34	Ca. 85.0%
В	Fairphone 4 – Normal	14.7	10.9	9.8	Ca. 35	Ca. 86.0%
В	Fairphone 4 – Blitz	14.5	10.9	9.5	Ca. 35	Ca. 86.0%
В	Samsung Galaxy A34 – Normal	16.2	11.1	11.7	Ca. 38	Ca. 84.0%
С	Samsung Galaxy A55	20.5	11.1	17.2	Ca. 38	Ca. 69.7%
С	Fairphone 4	10.8	7.4	7.9	Ca. 23	Ca. 90.0%

Einfluss des Smartphones auf das Ergebnis

Angaben in mm	Samsung Galaxy A55	Fairphone 4	Samsung Galaxy A 34
Durchschnitt Standardabweichung	9.9	10.0	11.1
Durschnitt RMSE	14.2	14.3	14.2

Vergleich der Aufnahmemethode

Angaben in mm	Normal	Nacht	Blitz
Durchschnitt Standardabweichung	10.1	10.3	9.9
Durschnitt RMSE	15.3	15.0	12.3

Fazit

- Die Smartphone SfM ist für viele Anwendungsbereiche geeignet
- Die Verwendung des Blitzes wird empfohlen
- Kann zur Unterstützung des Laserscanners verwendet werden
- Bei kleinen Schächten können bessere Ergebnisse erzielt werden

Bedeutung für BIM

- Genauigkeiten bei Tageslicht deutlich besser
- Dokumentation von Veränderungen -> Umbauten
- Modell kann zur Mengenberechnung verwendet werden
- Grundlage zur Erstellung des BIM-Modells -> Unterstützung der Bestandsaufnahmen

17.11.2025 Lukas Hanz 29

Fazit

	Genauigkeit des SfM-Modells	Verwendungszweck	
Ziel 1	<5cm	Einfache Modellierung in Autodesk Revit	00
Ziel 2	<3cm	Einfache Berechnungen in ausreichender Genauigkeit möglich	
Ziel 3	<1cm	Optimale Genauigkeit für Berechnungen	• •

Quellen

- Luhman, T. (2023). Nahbereichsphotogrammetrie (5. Ausg.). Deutschland: VDE Verlag GMBH.
- Zweckverband Landeswasserversorgung. (10. 01 2025). Von https://www.lw-online.de/ abgerufen
- Landeshauptstadt Stuttgart (25.10.2025). Von https://www.stuttgart.de/leben/bauen/building-information-modeling/bim-kurz-erklaert